jueves, 25 de julio de 2013






Son constituyentes químicos fundamentales e imprescindibles en la materia viva porque:
a)son los "instrumentos moleculares" mediante los cuales se expresa la información genética; es decir, las proteinas ejecutan las órdenes dictadas por los ácidos nucléicos.

b)son sustancias "plásticas" para los seres vivos, es decir, materiales de construcción y reparación de sus propias estructuras celulares. Sólo excepcionalmente sirven como fuente de energía.

c)muchas tienen "actividad biológica" (transporte, regulación, defensa, reserva, etc...). Esta característica diferencia a las proteinas de otros principios inmediatos como glúcidos y lípidos que se encuentran en las células como simples sustancias inertes.

 


Funciones de las proteínas
Las proteinas determinan la forma y la estructura de las células y dirigen casi todos los procesos vitales. Las funciones de las proteinas son específicas de cada una de ellas y permiten a las células mantener su integridad, defenderse de agentes externos, reparar daños, controlar y regular funciones, etc...Todas las proteinas realizan su función de la misma manera: por unión selectiva a moléculas. Las proteinas estructurales se agregan a otras moléculas de la misma proteina para originar una estructura mayor. Sin embargo,otras proteinas se unen a moléculas distintas: los anticuerpos a los antígenos específicos, la hemoglobina al oxígeno, las enzimas a sus sustratos, los reguladores de la expresión génica al ADN, las hormonas a sus receptores específicos, etc...
A continuación se exponen algunos ejemplos de proteinas y las funciones que desempeñan:


Función ESTRUCTURAL

-Algunas proteinas constituyen estructuras celulares:
  • Ciertas glucoproteinas forman parte de las membranas celulares y actuan como receptores o facilitan el transporte de sustancias.
  • Las histonas, forman parte de los cromosomas que regulan la expresión de los genes.
-Otras proteinas confieren elasticidad y resistencia a órganos y tejidos:
  • El colágeno del tejido conjuntivo fibroso.
  • La elastina del tejido conjuntivo elástico.
  • La queratina de la epidermis.

-Las arañas y los gusanos de seda segregan fibroina para fabricar las telas de araña y los capullos de seda, respectivamente.

Función ENZIMATICA
-Las proteinas con función enzimática son las más numerosas y especializadas. Actúan como biocatalizadores de las reacciones químicas del metabolismo celular.

Función HORMONAL
-Algunas hormonas son de naturaleza protéica, como la insulina y el glucagón (que regulan los niveles de glucosa en sangre) o las hormonas segregadas por la hipófisis como la del crecimiento o la adrenocorticotrópica (que regula la síntesis de corticosteroides) o la calcitonina (que regula el metabolismo del calcio).

Función REGULADORA
-Algunas proteinas regulan la expresión de ciertos genes y otras regulan la división celular (como la ciclina).

Función HOMEOSTATICA
-Algunas mantienen el equilibrio osmótico y actúan junto con otros sistemas amortiguadores para mantener constante el pH del medio interno.

Función DEFENSIVA
  • Las inmunoglogulinas actúan como anticuerpos frente a posibles antígenos.
  • La trombina y el fibrinógeno contribuyen a la formación de coágulos sanguíneos para evitar hemorragias.
  • Las mucinas tienen efecto germicida y protegen a las mucosas.
  • Algunas toxinas bacterianas, como la del botulismo, o venenos de serpientes, son proteinas fabricadas con funciones defensivas.
Función de TRANSPORTE
  • La hemoglobina transporta oxígeno en la sangre de los vertebrados.
  • La hemocianina transporta oxígeno en la sangre de los invertebrados.
  • La mioglobina transporta oxígeno en los músculos.
  • Las lipoproteinas transportan lípidos por la sangre.
  • Los citocromos transportan electrones.
Función CONTRACTIL
  • La actina y la miosina constituyen las miofibrillas responsables de la contracción muscular.
  • La dineina está relacionada con el movimiento de cilios y flagelos.
Función DE RESERVA
  • La ovoalbúmina de la clara de huevo, la gliadina del grano de trigo y la hordeina de la cebada, constituyen la reserva de aminoácidos para el desarrollo del embrión.
  • La lactoalbúmina de la leche.


¿Qué son los Aminoácidos?
.

-
-
Son sustancias cristalinas, casi siempre de sabor dulce; tienen carácter ácido comopropiedad básica y actividad óptica; químicamente son ácidos carbónicos con, por lo menos, un grupo amino por molécula, 20 aminoácidos diferentes son los componentes esenciales de las proteínas.
Aparte de éstos, se conocen otros que son componentes de las paredes celulares. Las plantas pueden sintetizar todos los aminoácidos, nuestro cuerpo solo sintetiza 16, aminoácidos, éstos, que el cuerpo sintetiza reciclando las células muertas a partir del conducto intestinal y catabolizando las proteínas dentro del propio cuerpo.
Los aminoácidos son las unidades elementales constitutivas de las moléculas denominadas Proteínas. Son pues, y en un muy elemental símil, los "ladrillos" con los cuales el organismo reconstituye permanentemente sus proteínas específicas consumidas por la sola acción de vivir.
Proteínas que son los compuestos nitrogenados más abundantes del organismo, a la vez que fundamento mismo de la vida. En efecto, debido a la gran variedad de proteínas existentes y como consecuencia de su estructura, las proteínas cumplen funciones sumamente diversas, participando en todos los procesos biológicos y constituyendo estructuras fundamentales en los seres vivos. De este modo, actúan acelerando reacciones químicas que de otro modo no podrían producirse en los tiempos necesarios para la vida (enzimas), transportando sustancias (como la hemoglobina de la sangre, que transporta oxígeno a los tejidos), cumpliendo funciones estructurales (como la queratina del pelo), sirviendo como reserva (albúmina de huevo), etc.
Los alimentos que ingerimos nos proveen proteínas. Pero tales proteínas no se absorben normalmente en tal constitución sino que, luego de su desdoblamiento ("hidrólisis" o rotura), causado por el proceso de digestión, atraviesan la pared intestinal en forma de aminoácidos y cadenas cortas de péptidos, según lo que se denomina " circulación entero hepática".
Esas sustancias se incorporan inicialmente al torrente sanguíneo y, desde allí, son distribuídas hacia los tejidos que las necesitan para formar las proteínas, consumidas durante el ciclo vital.
Se sabe que de los 20 aminoácidos proteicos conocidos, 8 resultan indispensables (o esenciales) para la vida humana y 2 resultan "semi indispensables". Son estos 10 aminoácidos los que requieren ser incorporados al organismo en su cotidiana alimentación y, con más razón, en los momentos en que el organismo más los necesita: en la disfunción o enfermedad. Los aminoácidos esenciales más problemáticos son el triptófano, la lisina y la metionina. Es típica su carencia en poblaciones en las que los cereales o los tubérculos constituyen la base de la alimentación. Los déficit de aminoácidos esenciales afectan mucho más a los niños que a los adultos.
Hay que destacar que, si falta uno solo de ellos (Aminoácido esenciales) no será posible sintetizar ninguna de las proteínas en la que sea requerido dicho aminoácido. Esto puede dar lugar a diferentes tipos de desnutrición, según cual sea el aminoácido limitante.
Lista de Aminoácidos (Esenciales y no esenciales) y función de cada una de ellos:
  • Alanina: Función: Interviene en el metabolismo de la glucosa. La glucosa es un carbohidrato simple que el organismo utiliza como fuente de energía.
  • Arginina: Función: Está implicada en la conservación del equilibrio de nitrógeno y de dióxido de carbono. También tiene una gran importancia en la producción de la Hormona del Crecimiento, directamente involucrada en el crecimiento de los tejidos y músculos y en el mantenimiento y reparación del sistema inmunologico.
  • Asparagina: Función: Interviene específicamente en los procesos metabólicos del Sistema Nervioso Central (SNC).
  • Acido Aspártico: Función: Es muy importante para la desintoxicación del Hígado y su correcto funcionamiento. El ácido L- Aspártico se combina con otros aminoácidos formando moléculas capases de absorber toxinas del torrente sanguíneo.
  • Citrulina: Función: Interviene específicamente en la eliminación del amoníaco.
  • Cistina: Función: También interviene en la desintoxicación, en combinación con los aminoácidos anteriores. La L - Cistina es muy importante en la síntesis de la insulina y también en las reacciones de ciertas moléculas a la insulina.
  • Cisteina: Función: Junto con la L- cistina, la L- Cisteina está implicada en la desintoxicación, principalmente como antagonista de los radicales libres. También contribuye a mantener la salud de los cabellos por su elevado contenido de azufre.
  • Glutamina: Función: Nutriente cerebral e interviene específicamente en la utilización de la glucosa por el cerebro.
  • Acido Glutáminico: Función: Tiene gran importancia en el funcionamiento del Sistema Nervioso Central y actúa como estimulante del sistema inmunologico.
  • Glicina: Función: En combinación con muchos otros aminoácidos, es un componente de numerosos tejidos del organismo.
  • Histidina: Función: En combinación con la hormona de crecimiento (HGH) y algunos aminoácidos asociados, contribuyen al crecimiento y reparación de los tejidos con un papel específicamente relacionado con el sistema cardio-vascular.
  • Serina: Función: Junto con algunos aminoácidos mencionados, interviene en la desintoxicación del organismo, crecimiento muscular, y metabolismo de grasas y ácidos grasos.
  • Taurina: Función: Estimula la Hormona del Crecimiento (HGH) en asociación con otros aminoácidos, esta implicada en la regulación de la presión sanguinea, fortalece el músculo cardiaco y vigoriza el sistema nervioso.
  • Tirosina: Función: Es un neurotransmisor directo y puede ser muy eficaz en el tratamiento de la depresión, en combinación con otros aminoácidos necesarios.
  • Ornitina: Función: Es específico para la hormona del Crecimiento (HGH) en asociación con otros aminoácidos ya mencionados. Al combinarse con la L-Arginina y con carnitina (que se sintetiza en el organismo, la L-Ornitina tiene una importante función en el metabolismo del exceso de grasa corporal.
  • Prolina: Función: Está involucrada también en la producción de colágeno y tiene gran importancia en la reparación y mantenimiento del músculo y huesos.
Los Ocho (8) Esenciales
  • Isoleucina: Función: Junto con la L-Leucina y la Hormona del Crecimiento intervienen en la formación y reparación del tejido muscular.
  • Leucina: Función: Junto con la L-Isoleucina y la Hormona del Crecimiento (HGH) interviene con la formación y reparación del tejido muscular.
  • Lisina: Función: Es uno de los más importantes aminoácidos porque, en asociación con varios aminoácidos más, interviene en diversas funciones, incluyendo el crecimiento, reparación de tejidos, anticuerpos del sistema inmunológico y síntesis de hormonas.
  • Metionina: Función: Colabora en la síntesis de proteínas y constituye el principal limitante en las proteínas de la dieta. El aminoácido limitante determina el porcentaje de alimento que va a utilizarse a nivel celular.
  • Fenilalanina: Función: Interviene en la producción del Colágeno, fundamentalmente en la estructura de la piel y el tejido conectivo, y también en la formación de diversas neurohormonas.
  • Triptófano: Función: Está inplicado en el crecimiento y en la producción hormonal, especialmente en la función de las glándulas de secreción adrenal. También interviene en la síntesis de la serotonina, neurohormona involucrada en la relajación y el sueño.
  • Treonina: Función: Junto con la con la L-Metionina y el ácido Aspártico ayuda al hígado en sus funciones generales de desintoxicación.
  • Valina: Función: Estimula el crecimiento y reparación de los tejidos, el mantenimiento de diversos sistemas y balance de nitrógeno.
Debemos recordar que, debido a la crítica relación entre los diversos aminoácidos y los aminoácidos limitantes presentes en cualquier alimento. Solo una proporción relativamente pequeña de aminoácidos de cada alimento pasa a formar parte de las proteínas del organismo. El resto se usa como fuente de energía o se convierte en grasa si no debe de usarse inmediatamente.
Productos naturales que contienen las cantidades medias de aminoácidos que se usan en realidad a nivel celular

Cantidades en gramos

  • Almendras (1 taza) 1.00 gr.
  • Semillas de girasol crudas (1 taza) 1.28 gr.
  • Arroz Integral (1 taza) 0.47 gr.
  • Cebada (1 taza) 0.90 gr.
  • Guisantes (1 taza) 0.27 gr.
  • Habichuelas rojas (1 taza) 0.85 gr.
  • Semillas de Ajonjolí (1 taza) 0.89 gr.
  • Pan integral (1 rebanada) 0.14 gr.
  • Spaghetti Harina Integral (1 taza) 0.65 gr.
  • Todos los demás vegetales (1 taza) 0.27 gr.
Productos aminales que contienen las cantidades medias de aminoacidos que se usan en realidad a nivel celular
Cantidades en gramos
  • Leche (1 taza) 0.29 gr.
  • Una clara de huevo 1.63 gr.
  • Huevo completo (aminoácidos limitantes) 0.70 gr.
  • Pescado (1/4 libra) 0.21 gr.
  • Hígado (1/4 libra) 0.78 gr.
  • Queso blanco (1/4 taza) 0.26 gr.
  • Carne de res (1/2 libra) 1.49 gr.
  • Carne de cerdo (1/4 libra) 0.69 gr.
  • Pavo (1/4 libra) utilización muy limitada de aminoácidos. gr.
  • Pollo (1/4 libra) 0.95 gr.
  • Cordero o Cabro (1/2 libra) 1.54 gr.
Para saber la cantidad media de aminoácidos que necesitamos al día, se multiplica el peso corporal en kilos (1000 gramos) 0.12 %.
La libra americana es de 450 gramos. Si el peso son 146 libras multiplica por 450 gramos y luego los divide por 1000 da el peso en kilos.
Ejemplo: una persona que pesa 146 libras americanas, lo multiplicado por 450 gramos es igual a 65700 y lo dividimos por 1000 es igual a 65.70 kilos.
146 x 450 = 65.700 gramos
65.700 - 1000 = 65.70 kilos.
Valor biológico de las proteínas


El conjunto de los aminoácidos esenciales sólo está presente en las proteínas de origen animal. En la mayoría de los vegetales siempre hay alguno que no está presente en cantidades suficientes. Se define el valor o calidad biológica de una determinada proteína por su capacidad de aportar todos los aminoácidos necesarios para los seres humanos. La calidad biológica de una proteína será mayor cuanto más similar sea su composición a la de las proteínas de nuestro cuerpo. De hecho, la leche materna es el patrón con el que se compara el valor biológico de las demás proteínas de la dieta.




Por otro lado, no todas las proteínas que ingerimos se digieren y asimilan. La utilización neta de una determinada proteína, o aporte proteico neto, es la relación entre el nitrógeno que contiene y el que el organismo retiene. Hay proteínas de origen vegetal, como la de la soja, que a pesar de tener menor valor biológico que otras proteínas de origen animal, su aporte proteico neto es mayor por asimilarse mucho mejor en nuestro sistema digestivo.

Necesidades diarias de proteínas


La cantidad de proteínas que se requieren cada día es un tema controvertido, puesto que depende de muchos factores. Depende de la edad, ya que en el período de crecimiento las necesidades son el doble o incluso el triple que para un adulto, y del estado de salud de nuestro intestino y nuestros riñones, que pueden hacer variar el grado de asimilación o las pérdidas de nitrógeno por las heces y la orina. También depende del valor biológico de las proteínas que se consuman, aunque en general, todas las recomendaciones siempre se refieren a proteínas de alto valor biológico. Si no lo son, las necesidades serán aún mayores.


En general, se recomiendan unos 40 a 60 gr. de proteínas al día para un adulto sano. La Organización Mundial de la Salud y las RDA USA recomiendan un valor de 0,8 gr. por kilogramo de peso y día. Por supuesto, durante el crecimiento, el embarazo o la lactancia estas necesidades aumentan, como reflejan la tabla de necesidades mínimas de proteínas.


A TENER EN CUENTA: Las raciones, expresadas como ingestas diarias a lo largo del tiempo, están destinadas a cubrir las variaciones individuales entre la mayoría de las personas normales, que viven en Estados Unidos en condiciones de estrés ambiental habitual. La composición de aminoácidos tenida en cuenta para estos cálculos es la típica de la dieta media de los Estados Unidos, que puede ser igualmente aplicable a la dieta de los españoles. 




El máximo de proteínas que podemos ingerir sin afectar a nuestra salud, es un tema aún más delicado. Las proteínas consumidas en exceso, que el organismo no necesita para el crecimiento o para el recambio proteico, se queman en las células para producir energía. A pesar de que tienen un rendimiento energético igual al de los hidratos de carbono, su combustión es más compleja y dejan residuos metabólicos, como el amoniaco, que son tóxicos para el organismo. El cuerpo humano dispone de eficientes sistemas de eliminación, pero todo exceso de proteínas supone cierto grado de intoxicación que provoca la destrucción de tejidos y, en última instancia, la enfermedad o el envejecimiento prematuro. Debemos evitar comer más proteínas de las estrictamente necesarias para cubrir nuestras necesidades.


Por otro lado, investigaciones muy bien documentadas, llevadas a cabo en los últimos años por el doctor alemán Lothar Wendt, han demostrado que los aminoácidos se acumulan en las membranas basales de los capilares sanguíneos para ser utilizados rápidamente en caso de necesidad. Esto supone que cuando hay un exceso de proteínas en la dieta, los aminoácidos resultantes siguen acumulándose, llegando a dificultar el paso de nutrientes de la sangre a las células (microangiopatía). Estas investigaciones parecen abrir un amplio campo de posibilidades en el tratamiento a través de la alimentación de gran parte de las enfermedades cardiovasculares, que tan frecuentes se han vuelto en occidente desde que se generalizó el consumo indiscriminado de carne.

¿Proteínas de origen vegetal o animal?
Puesto que sólo asimilamos aminoácidos y no proteínas completas, el organismo no puede distinguir si estos aminoácidos provienen de proteínas de origen animal o vegetal. Comparando ambos tipos de proteínas podemos señalar:
Las proteínas de origen animal son moléculas mucho más grandes y complejas, por lo que contienen mayor cantidad y diversidad de aminoácidos. En general, su valor biológico es mayor que las de origen vegetal. Como contrapartida son más difíciles de digerir, puesto que hay mayor número de enlaces entre aminoácidos por romper. Combinando adecuadamente las proteínas vegetales (legumbres con cereales o lácteos con cereales) se puede obtener un conjunto de aminoácidos equilibrado. Por ejemplo, las proteínas del arroz contienen todos los aminoácidos esenciales, pero son escasas en lisina. Si las combinamos con lentejas o garbanzos, abundantes en lisina, la calidad biológica y aporte proteico resultante es mayor que el de la mayoría de los productos de origen animal.
Al tomar proteínas animales a partir de carnes, aves o pescados ingerimos también todos los desechos del metabolismo celular presentes en esos tejidos (amoniaco, ácido úrico, etc.), que el animal no pudo eliminar antes de ser sacrificado. Estos compuestos actúan como tóxicos en nuestro organismo. El el metabolismo de los vegetales es distinto y no están presentes estos derivados nitrogenados. Los tóxicos de la carne se pueden evitar consumiendo las proteínas de origen animal a partir de huevos, leche y sus derivados. En cualquier caso, siempre serán preferibles los huevos y los lácteos a las carnes, pescados y aves. En este sentido, también preferiremos los pescados a las aves, y las aves a las carnes rojas o de cerdo.
La proteína animal suele ir acompañada de grasas de origen animal, en su mayor parte saturadas. Se ha demostrado que un elevado aporte de ácidos grasos saturados aumenta el riesgo de padecer enfermedades cardiovasculares.
En general, se recomienda que una tercera parte de las proteínas que comamos sean de origen animal, pero es perfectamente posible estar bien nutrido sólo con proteínas vegetales. Eso sí, teniendo la precaución de combinar estos alimentos en función de sus aminoácidos limitantes. El problema de las dietas vegetarianas en occidente suele estar más bien en el déficit de algunas vitaminas, como la B12, o de minerales, como el hierro.

MI VIDEO DE LAS PROTEINAS






  

LA IMPORTANCIA DEL pH EN EL CUERPO

El pH es la escala que se utiliza para conocer la acidez ó alcalinidad de un elemento.  
 pH significa “potencial de Hidrógeno”.
La escala pH va desde 0 a 14. Un pH de 7 significa que existe equilibrio entre acidez y alcalinidad y es considerado neutro. Si este índice está por encima de 7,8 (excesivamente alcalino) ó por debajo de 7 (ácido) existe riesgo para la salud. El sistema que regula el pH en nuestro organismo intenta mantener el pH en 7,4 (ligeramente alcalino) que es el valor ideal.

Para que las células de nuestro cuerpo funcionen de forma correcta y adecuada su pH debe de ser ligeramente alcalino. En una persona sana el pH de la sangre se encuentra entre 7,40 y 7,45.




El torrente sanguíneo tiene que nutrir y oxigenar todos nuestros tejidos y órganos, pero además otra de sus funciones es recoger todos los deshechos o residuos tóxicos que el propio metabolismo celular origina y después pasar  por diferentes órganos que depueren estos residuos (higado, riñones y pulmones).
Linus Pauling (químico ganador de dos premios Nobel) afirma que mantener el cuerpo con un pH alcalino es la clave de mantener una buena salud.

10 EJEMPLOS DE PH EN UESTRO CUERPO
El pH varia de órgano a órgano y de secreción a secreción.
algunos ejemplos.

Saliva - 6 a 7 de pH
Liquido Amniótico. 7 - 7.5 pH
Semen 7.2 - 8 pH
Lágrimas 7.5 pH
Orina 8.0 pH
Sangre 7.35 a 7.45 pH
Jugo Gástrico 1.5 pH
Saliva (pacientes con cáncer) 4,5 a 5,7
Sudor humano 5.5
Vomito 3,8 pH
ácido gástrico: 1.5
heces: 6 - 7
sudor: 6 - 8
cerumen: 6.1
semen: 7.5
fuido vaginal: 4.5 - 5
bilis: 7 - 7.




PORTAFOLIO DE BIOQUIMICA



Portafolio bioquimica carla from Carlita Atiencia

LA ACIDEZ Y LA BASICIDAD

La acidez y la basicidad constituyen el conjunto de propiedades características de dos importantes grupos de sustancias químicas: los ácidos y las bases. Las ideas actuales sobre tales conceptos químicos consideran los ácidos como dadores de protones y las bases como aceptoras. Los procesos en los que interviene un ácido interviene también su base conjugada, que es la sustancia que recibe el protón cedido por el ácido. Tales procesos se denominan reacciones ácido-base.
La acidez y la basicidad son dos formas contrapuestas de comportamiento de las sustancias químicas cuyo estudio atrajo siempre la atención de los químicos. En los albores mismos de la ciencia química, Boyle y Lavoisier estudiaron sistemáticamente el comportamiento de las sustancias agrupadas bajo los términos de ácido y álcali (base).
Pero junto con los estudios descriptivos de sus propiedades, el avance de los conocimientos sobre la estructura del átomo y sobre la naturaleza íntima de los procesos químicos aportó nuevas ideas sobre los conceptos de ácido y de base.
En la actualidad, el resultado final de la evolución de esos dos conceptos científicos constituye un importante capítulo de la química general que resulta imprescindible para entender la multitud de procesos químicos que, ya sea en la materia viva, ya sea en la materia inerte, se engloban bajo el nombre de reacciones ácido-base.
EL COMPORTAMIENTO QUÍMICO DE ...
El estudio de los procesos químicos en los que intervienen ácidos y bases ocupa un lugar destacado en la historia de la química. Antes de que se conociera el comportamiento a nivel molecular de este tipo de sustancias, se reconocían por sus propiedades características. Esta idea de definir el concepto de ácido y de base indicando cómo ha de comportarse químicamente una sustancia para que pueda considerarse como miembro de una u otra familia de compuestos fue introducida por Boyle en 1663. Posteriormente un conocimiento más preciso de las fórmulas químicas llevó a algunos investigadores, como Justus von Liebig (1803-1873), a definir los ácidos por su composición molecular; sin embargo, la vieja idea de Boyle, aunque transformada con las sucesivas definiciones de ácidos y bases, sigue aún en pie.
Propiedades químicas de los ácidos
El comportamiento químico de los ácidos se resume en las siguientes propiedades:
· Poseen un sabor agrio. La palabra ácido procede, precisamente, del latín (acidus = agrio) y recuerda el viejo procedimiento de los químicos antiguos de probarlo todo, que fue el origen de un buen número de muertes prematuras, por envenenamiento, dentro de la profesión.
· Colorean de rojo el papel de tornasol. El tornasol es un colorante de color violeta en disolución acuosa (tintura de tornasol) que puede cambiar de color según el grado de acidez de la disolución. Impregnado en papel sirve entonces para indicar el carácter ácido de una disolución. Es, pues, un indicador.
· Sus disoluciones conducen la electricidad. La calidad de una disolución ácida como conductor depende no sólo de la concentración de ácido, sino también de la naturaleza de éste, de modo que, a igualdad de concentración, la comparación de las conductividades de diferentes ácidos permite establecer una escala de acidez entre ellos.
· Desprenden gas hidrógeno cuando reaccionan en disolución con cinc o con algunos otros metales.
Propiedades químicas de las bases
Las bases, también llamadas álcalis, fueron caracterizadas, en un principio, por oposición a los ácidos. Eran sustancias que intervenían en aquellas reacciones en las que se conseguía neutralizar la acción de los ácidos. Cuando una base se añade a una disolución ácida elimina o reduce sus propiedades características. Otras propiedades observables de las bases son las siguientes:
· Tienen un sabor amargo característico.
· Al igual que los ácidos, en disolución acuosa conducen la electricidad.
· Colorean de azul el papel de tornasol.
· Reaccionan con los ácidos para formar una sal más agua.






Propiedades químicas de los ácidos
l comportamiento químico de los ácidos puede resumirse en las siguientes propiedades:
Poseen un sabor agrio
La palabra ácido procede, precisamente, del latín (acidus = agrio) y recuerda el viejo procedimiento de los químicos antiguos de probarlo todo, que fue el origen de un buen número de muertes prematuras, por envenenamiento, dentro de la profesión.
Colorean de rojo el papel de tornasol
El tornasol es un colorante de color violeta en disolución acuosa (tintura de tornasol) que puede cambiar de color según el grado de acidez de la disolución. Impregnado en papel sirve entonces para indicar el carácter ácido de una disolución. Es, pues, un indicador.
Sus disoluciones conducen la electricidad
La calidad de una disolución ácida como conductor depende no sólo de la concentración de ácido, sino también de la naturaleza de éste, de modo que, a igualdad de concentración, la comparación de las conductividades de diferentes ácidos permite establecer una escala de acidez entre ellos.
Desprenden gas hidrógeno
Se produce desprendimiento de gas hidrógeno cuando reaccionan en disolución con cinc o con algunos otros metales.

El papel de tornasol es un indicador de pH que se colorea de rojo sumergido en un ácido y de azul cuando lo hace una base. Cuanto más fuerte sea el ácido o la base, más intenso será el color del indicador.
Propiedades químicas de las bases
Las bases, también llamadas álcalis, fueron caracterizadas, en un principio, por oposición a los ácidos. Eran sustancias que intervenían en aquellas reacciones en las que se conseguía neutralizar la acción de los ácidos. Cuando una base se añade a una disolución ácida elimina o reduce sus propiedades características.Otras propiedades observables de las bases son las siguientes:
  • Tienen un sabor amargo característico.
  • Al igual que los ácidos, en disolución acuosa conducen la electricidad.
  • Colorean de azul el papel de tornasol.
  • Reaccionan con los ácidos para formar una sal más agua.

TRABAJO DE LABORATIO







video de las proteinas a los niños 
http://www.youtube.com/watch?v=3sRIy5QVcS8

No hay comentarios:

Publicar un comentario